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Abstract: We have performed molecular dynamics simulations for two different models of a photosynthetic reaction 
center (Rps. viridis) to examine the diabatic surfaces governing the primary charge separation after photoexcitation. 
We include the electrostatic energy of the entire proteic complex and also account for the energies of the electronic 
states of chromophores as computed by semiempirical quantum theory. The statistics we have acquired from our 
dynamics trajectories is sufficient to contrast the behaviors of the two models, to deduce the effects of crystallization 
water, and to measure the size of nonlinear response on the pertinent diabatic surfaces. Further, with the perspective 
we develop, we are able to juxtapose the active and inactive branches of the reaction center. By renormalizing our 
computed diabatic surfaces with a physically reasonable value for the high-frequency dielectric response of the system, 
the simulation results can be brought into accord with experimental observations of the thermodynamic driving force 
for the primary electron transfer. With no further adjustment, we find that the diabatic surfaces for the excited special 
pair state, SP*, and the charge-separated state SP+-BPL" intersect with essentially no activation barrier. Here, BPL 
refers to the bacteriopheophytin on the L branch. In contrast, the SP* and SP+-BPM" surfaces intersect in the normal 
region with an activation barrier and an endothermic thermodynamic driving force. A related observation is that we 
find fluctuations in the pertinent energy gaps to be significantly smaller on the active L branch than they are on the 
inactive M branch. We also examine the surfaces associated with moving charge to the accessory bacteriochlorophylls, 
BCL and BCM. We find that these surfaces lie at energies far above SP*. This finding excludes the possibility of 
a two-step mechanism within our model for the primary charge transfer; it agrees roughly with Thompson and Zerner's 
estimate based on a dielectric continuum model. We make simple estimates based upon a superexchange mechanism 
with physically reasonable nearest-neighbor electronic coupling that indicate our computed diabatic surfaces are consistent 
with the experimentally observed kinetics of the primary electron transfer. We consider also the temperature dependence 
of the forward rate and the ratio of the rate of the back-reaction, SP+-BPL" -* SP to the rate of the forward reaction. 
Here, we carry out quantal analyses based upon our computed spectral densities for the energy gap fluctuations. 

1. Introduction 

This paper describes the molecular dynamics simulation, results, 
and interpretation of primary electron transfer in the bacterial 
photosynthetic reaction center, Rhodopseudomonas (Rps.) vir­
idis. 

Interest in the chemical physics of photosynthetic reaction 
centers (RC) has been spurred by X-ray crystallographic 
elucidation of the structures of two such systems.12 In the purple 
bacteria Rps. viridis, the RC is composed of chromophores 
(pigments) and four proteic subunits (C, L, M, and H) which 
provide the necessary scaffolding to hold the chromophores in 
place. The pigment molecules include four bacteriochlorophyll 
b (BC), two bacteriopheophytin b (BP), and two quinone 
molecules. The RC has two proteic branches (L and M) which 
exhibit an approximate 2-fold rotation symmetry. The two 
branches are joined by a bacteriochlorophyll b dimer, the so-
called special pair (SP). See Figure 1. 

The primary charge separation is the focus of much of the 
current research, both experimentally and theoretically.3-12 This 
process is the transfer of an electron from the photoexcited special 
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pair, SP*, to BPL. The primary charge separation has many 
puzzling features. Despite a large center-to-center distance of 
~ 17 A between SP and BPL, the electron transfer is very fast, 
occurring in roughly 10 ps or less. Further, even with the near-C2 
symmetry of the RC, the reaction occurs only along the L branch. 
Additionally, there is debate about the role of the accessory 
bacteriochlorophyll (BCL) in the electron transfer. These features 
are the primary concern of the molecular modeling and computer 
simulations presented herein. 

We consider, in particular, the energetics of nuclear reorga­
nization. We examine the different electronic diabatic surfaces 
by computing probability distributions and autocorrelation 
functions for the energy gaps between the surfaces. We also 
simulate nonequilibrium relaxation to determine the consequences 
of nonlinear effects. A similar approach has proved useful in 
analyzing the mechanism of aqueous ferrous-ferric electron 
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Figure 1. Schematic view of the reaction center showing the special pair 
(SP) of bacteriochlorophylls. the accessory bacteriochlorophylls (BCM 
and BCL) of the M and L branches, and the bacteriopheophytins (BPM 
and BPL). The surrounding proteic environment is depicted by the widely 
spaced hatched lines. The vertical dashed line denotes the line of near-C; 
rotational symmetry. In its photoexcitcd state, an electronic charge is 
distributed over the special pair. We refer to this state as SP* or state 
I. Soon after excitation, an electron is transferred to BPL forming 
SP+-BPL , which we refer to as state 3. In this paper, we study the 
energetics of the proteic complex for each of the five states, 1, 
2'(SP+-BCM ), 2(SP+-BCL ), 3'(SP+-BPM ), and 3. The energetics 
as a function of nuclear configurations allows us to predict the pathway 
of the primary electron transfer, 1 — 3, and to understand the inactivity 
of the M branch, i.e., I -f- 3'. 

transfer." The RC protein system, of course, has a far more 
complicated atomic structure than liquid water. Further, the 
RC possesses more than two pertinent redox states. This latter 
feature, as we shall see, leads to a phenomenology somewhat 
more general than that usually conceived of in the simplest Marcus 
pictures of electron transfer.14'15 

We are not the first to use molecular modeling and molecular 
dynamics to investigate the energetics of nuclear reorganizations 
pertinent to electron transfer in the RC.10•" We feel that our 
calculations represent a significant improvement over this earlier 
work, and the conclusions we draw are new. A detailed 
comparison is made in Section 6. The results we report herein 
are arrived at from many long trajectories. Our results appear 
to be reproducible with relatively small statistical uncertainties. 
The statistical quality is sufficient to discern significant differences 
between the diabatic surfaces on the active and inactive branches 
of the RC. Further, we can summarize many of our results in 
terms of a reduced model of three states coupled to a dissipative 
linear bath—a generalization of the often-studied spin-boson 
model.18" 

In the presentation that follows, we begin in Section 2 with the 
description of this reduced model. This phenomenology provides 
guidance as to which quantities should be studied in the molecular 
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dynamics simulation. Section 3 deals with the description of the 
potential fields and simulation parameters used in our molecular 
dynamics calculations. Section 4 gives a description of our 
simulation results. In Section S, these results are scaled using 
the experimentally observed thermodynamic driving force20-21 of 
the primary electron transfer and the semiempirical electronic 
structure energies of Thompson and Zerner.22 We conclude in 
Section 7 with a discussion of the dynamical mechanism of the 
primary electron transfer and comparisons of theory and exper­
iment. An Appendix discusses the role of electronic polarization. 
The formulas derived there pertain to the scaling carried out in 
Section 5. 

2. Reduced Model for Electron Transfer 

The electron transfer between a donor and an acceptor 
immersed in a dielectric medium can be modeled very simply by 
a two-level system coupled to the fluctuating field of a bath.18•" 
This is the physical model underlying the Marcus theory for 
electron transfer.14-'i In the nonadiabatic or weak coupling limit, 
the resonance state between donor and acceptor is reached by 
means of thermal fluctuations of the bath. Only at or near 
resonance, the electron can tunnel between the reactant and 
product sites. 

A similar picture can be used for a system like the RC where 
an additional intermediate state (the charged accessory bacte-
riochlorophyll) is present (see Figure 1). Consider the electron 
transfer along one of the two possible routes (L or M). The three 
redox states coincide with (1) the state where the special pair is 
photoexcited but neutral, SP* (for simplicity we make no 
distinction between the singlet and triplet forms.); (2) the state 
where the transferring electron resides on the accessory bactc-
riochlorophyll of the L branch, BCL (i.e., the redox state is 
SP*-BCL ); and (3) the state where the electron resides on the 
bacteriopheophytin of the L branch, BPL (i.e., the redox state 
is SP+-BPL ). For transfer on the M branch, we have states 2' 
and 3'corresponding to SP+-BCM and SP+-BPM ,respectively. 

For electron transfer occurring along the L branch, we imagine 
the Hamiltonian 

• 

/Y = £ l«>"„<«l + III >"i2<2| + |2>W2,(1|] 
n - l 

+ [|2>//23<3| + |3>W32<2|] (2.1) 

Here, H„ is the diabatic Hamiltonian for the nuclei when the 
system is in the redox state a. For simplicity, we assume that 
the interstate couplings are independent of the accessible nuclear 
coordinates. Further, since the special pair is at a relatively large 
distance from the pheophytin, we neglect the direct coupling 
between states 1 and 3. 

For electron transfer on the inactive M branch, the schematic 
Hamiltonian is essentially the same as that in eq 2.1. The 
difference is that state 2 is replaced by state 2', and state 3 is 
replaced by state 3'. 

The energy gap between states 1 and 3, 

Af13 = W3-W1 (2.2) 

is a function of the nuclear coordinates which at any time / can 
be written as 

Af13(O = -S1(Z) + At3 (2.3) 

Here. 

(18) Lcggett. A. J.;Chakravarty.S.; Dorsey. A. T.; Fisher, M. P. A.;Garg. 
A.; Zwergcr. W. Ret: Mod. Phys. 1987. 59. I. 

(19) Chandler. D. In Les Houches. Part I. Liquids, Freezing and the 
Glass Transition; Levesque, D., Hansen, J. P.. Zinn-Justin. J.. Eds.; Elsevier, 
B. V.: North Holland, 1991; pp 193-285. 

(20) Goldstein, R. A.; Takiff, L.; Boxer, S. G. Biochim. Biophys. Acta 
1988. 934. 253. 

(21) Ogrodnik. A.; VoIk, M.; Letterer, R.; Feick, R.; Michel-Beyerle. M. 
E. Biochim. Biophys. Acta 1988. 936, 361. 

(22) Thompson, M. A.; Zerner, M. C. J. Am. Chem. Soc. 1991,113,8210. 



4180 /. Am. Chem. Soc, Vol. 115, No. 10, 1993 Marchi et al. 

Ae3 = (AS13), (2.4) 

where (...)i indicates the equilibrium ensemble average with 
Hamiltonian H\. The dynamical variable -£\(i) is the instan­
taneous fluctuation of that energy gap from its average. We use 
the subscript notation || since the variable is akin to a local nuclear 
polarization field that is parallel to an axis connecting SP and 
BPL. 

Similarly, we can always partition the 1-2 energy gap into its 
average, a contribution from d?n(f). and an additional variable, 
£±(t). That is, 

AE12 = ^ 1 ( O - M i 1 ( O +Ae2 (2.5) 

with 

Ae2= (AE12), (2.6) 

and for conceptual reasons (see below) the constant b is chosen 
so that, at equal times, £\\ and £± are statistically orthogonal, 

<<V±>i = 0 (2-7> 
From this perspective of the system, the dynamics of the primary 
electron transfer is governed in large part by the dynamics of 
£±(t) and £\\(t). In subsequent sections of this paper, we show 
that these dynamical variables obey linear response to a reasonable 
approximation. This behavior is suggestive of the effective 
diabatic Hamiltonians, 

H1 « # B 

H2~HB-b£ir£x + Ae2 

/f3~ #„-<?!! + Ae3 (2.8) 

where HB is a harmonic bath Hamiltonian, and £\ and £± are 
linear functions of the normal modes of that bath. Such a system 
is a three-state generalization of the standard spin-boson mod­
el.1819 The corresponding model for the M branch is developed 
similarly with, for example, £\ and £ L replaced by the variables 
£\ and £' L. To the extent that the linear approximation is 
adequate, £x(t) and £\\(t) are Gaussian variables, and their 
classical dynamics are completely characterized by the correlation 
functions 

C1(O = ( ^ i ( O ) 1 C 1 ( O - ^ J A ( O ) 1 

QroSS(0 = <* j.*,(0>, (2-9) 
Note that in general CcrOss(0 ?* 0 for f ?* 0, since the orthogonality 
of the two variables cannot persist exactly to finite times in a 
dissipative system. Nevertheless, we will see that CcroSs(0 is 
extremely small. 

The probability distribution functions for the energy gaps are 

Pn(X) = (S(X-AE12)), 

Pu(x)=(d(x-AEn)), (2.10) 

To the extent that £\\ and £± are Gaussian random variables, 
both P\2(x) and P]i(x) will be Gaussian distributions, and the 
free energy governing £\\ and £± will be parabolic for any of the 
three diabatic states. Specifically, the free energies will be 

F2 = FB-b£{r£± + Ae2 

F3 = F B - S ( | + Ae3 (2.11) 

where 

with 

a]l = ̂ ((S£ll)
2)l a±= ?((!>£ J)1 (2.13) 

and/3"1 = k^T. Note that the average values of £\\(t) and (S1(O 
in state 1 are zero due to our definition of H1. 

An important consequence of the Gaussian or linear approx­
imation is the ability to quantize the system on the basis of what 
is learned from the classical molecular dynamics.19 In particular, 
the spectral densities for the energy gap fluctuations are obtained 
directly from the Fourier transforms, such as 

C1(Oi) = J^dr C8(O cos at (2.14) 

In the regime of weak interstate coupling, well-known expressions 
relate the spectral densities to rate constants for electron transfer.23 

Outside this regime, or for time scales where rate constants are 
not well defined, a more general numerical analysis of the quantum 
dynamics is necessary.24 In any case, the knowledge of the spectral 
densities provides the starting point for the calculations. 

We now turn to the detailed atomistic models for the RC from 
which we will compute the quantities described in this section. 

3. Atomistic Model and Simulation Technique 

We have constructed two atomistic models, I and II. For both, 
the calculations we have performed were based on the X-ray 
structure of the reaction center oiRps. viridis at 2.3-Aresolution25 

taken from the Brookhaven protein data bank. The terminal 
groups of subunits L, M, C, and H were formed by replacing the 
amide or carbonyl group respectively with a positively charged 
N-terminus and a negatively charged C-terminus. For each of 
the subunits we chose as the terminus the last amino acid of the 
series with known X-ray position. The coordinates of the 
ubiquinone chain (not known experimentally) were generated by 
computer graphics in order to minimize the hindrance with the 
neighboring groups. 

For the protein subunits we used the potential parameters and 
the topology definition of the CHARMm data base.26 We did 
not include the stretching term of the potential-energy function. 
The bonds were kept rigid by the SHAKE constraint algorithm.27 

Nonpolar hydrogens were not explicitly included in the model. 
The Verlet leap frog integrator28 (with a time step of 0.8 fs) was 
used to numerically solve the Newtonian equations of motion. 
For the purposes of performing the dynamics (but not for 
computing electrostatic contributions to energy gaps; see below), 
a spherical cutoff of 10 A was applied to the nonbonded 
interactions. The discontinuity in the potential function cutoff 
was smoothed out to zero by a third-order spline between 9 and 
10 A. All the simulation runs of our study were carried out with 
the molecular dynamics program ORAC developed by one of us 
(M.M.). 

Concerning the chromophores, in model I, the CHARMm 
potential parameters for bacteriochlorophyll a were utilized for 
bacteriochlorophylls b by unsaturating the single CC bond 
attached to the third pyrrole ring. We redefined the type of the 
atoms involved consistently with the CHARMm types and 
redistributed the charge by placing -0.1 e on the carbon and +0.Ie 

(23) Calculations of this type have been done for an inorganic exchange 
by: Bader, J. S.; Kuharski, R. A.; Chandler, D. J. Chem. Phys. 1990,93,230; 
for a proteic reaction by: Zheng, C; McCammon, J. A.; Wolynes, P. G. 
Chem. Phys. 1991,158, 261. Warshel's so-called "dispersed polaron" model 
(e.g., ref 16b) is similar though published implementations include a 
semiclassical approximation which incurs large errors whenever quantum effects 
are significant (see discussion by Bader et al.). 
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2352. Mak, C. H. Phys. Rev. Lett. 1992, 68, 899. Mak, C. H.; Gehlen, J. 
N. Chem. Phys. Lett., in press. 
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Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983,4,187. The potential 
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(28) Hockney, R. W. Methods Comput. Phys. 1970, 9, 136. 



Primary Electron Transfer in a Photosynthetic Reaction J. Am. Chem. Soc, Vol. 115, No. 10, 1993 4181 

on the hydrogen. For the remaining chromophores we assigned 
the atomic types according to the CHARMm categories and 
used an united atom approach for the nonpolar hydrogens. Since 
the menaquinone-7 (MQ7) and ubiquinone-1 (UQl) are far away 
from the regions involved in the primary charge separation, their 
electrostatic potential was modeled in a simple way. We assigned 
charges -0.55e and 0.55e respectively to the oxygen and carbon 
of the carbonyl groups. The charges of the ester groups of UQl 
were chosen to be 0.1, -0.3, and 0.2e respectively for the sp2 ring 
carbon, the oxygen, and the methyl group. All the charges on 
the remaining atoms and on all the atoms of the dihydroneuro-
sporene (NSl) were set to zero. 

For the model II chromophores, we used the parameterization 
of the prosthetic groups made by Treutlein et al.'7ab and available 
recently with the XPLOR program.29 Model II also included 
the crystallization water molecules and the detergent molecule 
dimethylaminolauryl oxide. The latter molecule was parame­
terized according to Treutlein et al.17ab The simple point charge 
(SPC) model was used for water. Neither the crystallization 
water nor the detergent was included in model I. The charge 
states for the amino acids were those for pH = 7, assuming 
standard pK values, except for glutamate L104 that was 
protonated in model II, but nonprotonated in model I. A dielectric 
constant of 1 was used for both models. The number of 
crystallographically resolved water molecules is 201, nearly all 
of which are in the interior of the proteic complex. 

The RC is a membrane protein, embedded in the phospholipid 
bilayers and surrounded on the sides of the subunits H and C by 
a water solution of respectively cytoplasm and peryplasm. A 
realistic simulation of an accurate model of the full system is for 
the moment computationally prohibitive. However, various 
experiments in the past have shown that the primary electron 
transfer is only mildly sensitive to changes in temperature.30 As 
a result, it is plausible that the bilayer and exterior water solvation 
have only a small effect on the primary electron transfer. We 
have thus chosen to simulate a system which included only the 
RC and have ignored the effects due to the external environment. 
Moreover, only a portion of the total number of atoms of the RC 
were treated dynamically; the rest were treated statically. We 
divided the system into two regions: a primary simulation region 
where the Newtonian equations of motion were solved explicitly 
and a secondary region where the atoms were kept fixed at their 
X-ray positions. The atoms of the primary region moved under 
the potential field produced by themselves and by the secondary 
atoms. The simulation was run in the microcanonical ensemble. 
With regard to the alternative boundary conditions used by other 
groups to simulate the RC (e.g., stochastic boundaries), our choice 
of simulation method has the advantage that there is always a 
conserved quantity (i.e., the total energy) that can be used as a 
quality control for our MD simulation. 

We picked as the primary region an area of the RC which 
surrounds the central chromophores. In particular, six spheres 
of radius r0 are each centered on the center of masses of the 
pyrrole rings of the SP, BC, and BP on the L and M sides. Atoms 
lying within the volume formed from the union of these spheres 
are the primary atoms. For model I and II we chose respectively 
/•o = 20 A and ro = 23 A. This yielded a primary region of 4945 
atoms for model I and of 5550 atoms for model II. There are 
74 crystallization water molecules among those atoms in the 
primary region of model II. We carried out a few short trajectories 
with larger values of r0 to convince ourselves that our computed 
averages and correlation functions were reasonably insensitive to 
increasing the size of the primary region. 

The initial stage of the MD simulation for both models involved 
an equilibration period of 60 ps where the atomic velocities were 

(29) Brunger, A. T. In Crystallographic Computing 4: Techniques and 
New Technologies; Isaacs, N. W.; Taylor, M. R., Eds.; Oxford, Clarendon 
Press, 1988. We acquired the XPLOR parameter and topology files through 
the data base available on the CRAY-YMP at the San Diego Super Computer 
Center. 

(30) Fleming, G. R.; Martin, J. L.; Breton, J. Nature 1988, 333, 190. 

scaled every 2 ps to thermalize the system around 300 K. A 
typical data acquisition run lasted 60 ps. Because of the large 
system size and length of the simulation, it would have been 
impractical to store all of the instantaneous atomic configurations 
for the length of the run. Thus, to gather time-dependent 
information relevant to the electron transfer, every 2.4 fs we have 
calculated and stored the local field on the four nitrogens of each 
pyrrole ring. We stress that our potential energy cutoffs affect 
the dynamics, but, when computing the energy gaps, contributions 
from all the atoms of the RC were included. 

4. Simulation Results 

4.1. Structure of the Reaction Center. We have first compared 
the X-ray coordinates of the RC with the calculated averaged 
structures of our two models. This comparison provides a simple 
means to assess how close the calculated phase space minimum 
is to the experimental one. We found that both models reproduced 
the experimental structure with an overall root-mean-square (rms) 
displacement for the chromophores below 2 A. We obtain 1.7 
A and 1.3 A respectively for models I and II. In both cases the 
rms displacement from the X-ray positions was larger for the 
phytol and quinoid chains. This finding is in accord with the 
results of previous simulations of the RC.l7a'c 

As an indication of the atomic mobility, we have calculated 
the root-mean-square displacement from the average structure. 
The results for the two models are very similar. For model II, 
we have found an overall value of 0.2 A per atom. This global 
number cannot be directly related to experimental observations 
since it includes contributions from atoms at the borders of the 
primary region, which are most affected by the boundary 
conditions. For the bacteriochlorophylls and bacteriopheophytins 
we have found a rms displacement of 0.3 A which is in close 
agreement with the experimental value of 0.4 A.'7c The mobility 
of the phytol chains is larger than those of the pyrrole rings, with 
a rms displacement of 0.5 A. An interesting feature that we 
observed with model II is the high mobility of a few crystallization 
waters. Although the average rms displacement for the 74 water 
molecules included in the calculation is 0.5 A, the rms displace­
ments of waters 46, 51, 93, 95, 155, and 159 are above 1.0 A. 

4.2. Fluctuations of the Energy Gap. If the exchanged electron 
interacts with the proteic environment only through an electro­
static pseudopotential, the electrostatic energy VJj) of the electron 
when at the chromophore a is the only relevant part of the diabatic 
Hamiltonians. Note that to calculate the potential of the electron 
due to the proteic environment, one must subtract an electronic 
charge from the special pair. In particular, let {<?,( denote the set 
of all charges used in our molecular dynamics simulation of the 
SP* state. To compute Va, we use the related set of charges, 

z,. =qt + e/8, for site i being a nitrogen 
atom in the special pair 

= q,, otherwise (4.1) 

where -e is the charge of an electron. Then 

where j is summed over all nitrogens sites in chromophore a 
(there are n = 8 such sites in the special pair, and n = 4 in the 
other four chromophores: BCL, BCM, BPL, and BPM), and the 
index;' is summed over all partially or fully charged sites (nitrogen 
or otherwise) throughout the proteic system but not within 
chromophore a. Note that, in this formulation of Va, we imagine 
that the charge distribution of the transferring electron is 
uniformly distributed on the nitrogens. (We have considered the 
energetic consequences of varying this distribution within a given 
chromophore and find them to be small. See Section 5.) During 
the simulations, we calculated Va(t) on every chromophore of the 
functional (L) and nonfunctional (M) branches. 
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Figure 2. Electrostatic energies versus simulation time: results for model 
II. We plot Va(t) (see text) for four chromophores. 

The potential energy difference between two chromophores a 
and /3, Va - Vs, is the energy gap or the vertical excitation energy 
for electron transfer from a to /5. For example, 

^ l 2 = ^ B C L - ^SP 

A^13 = ^BPL ~~ ^SP (4.3) 

and similarly for energy gaps on the M branch. These are the 
basic energy gaps studied in our simulation. Scaled and shifted 
energy gaps which incorporate information from quantum 
chemical calculations are considered in Section S. 

For model I, which did not include the waters, we found that 
forallchromophores Va(t) fluctuated as if there was a monostable 
free energy surface. For model II instead, we found a more 
complex behavior. We show in Figure 2 a plot of the electrostatic 
energy versus simulation time for the bacteriopheophytins and 
accessory bacteriochlorophylls on the L and M sides. Visual 
inspection of Figure 2 indicates that the electric potential fluctuates 
significantly less at the BPL site than at the site of BPM or BCL 
or BCM. Further, while the energy fluctuations of BPL and 
BPM are uneventful, transitions from one configurational state 
to another and back can be observed for BCL and BCM. Such 
events occur only once within 56 ps of simulation. This transition 
is probably due to a polar group isomerization in the neighboring 
amino acid side chains of the bacteriochlorophylls. 

We have computed the time correlation functions of the energy 
gap fluctuations, defined as 

C ^ f - r ' ) = ( 0 E 1 7 ( O ^ ( O ) 1 (4.4) 

where &EtJ(t) = LEy(Jt) - (LEi1) \. Here, i and,/' refer to the state 
labels 1, 2, 3, 2', and 3'. The subscript 1 labeling the average 
indicates that the trajectory from which it is obtained is carried 
out with the potential energy we associate with state 1, SP*. 
Linear combinations of Ci2(O, Cn(O, and C23(O yield the 
correlation functions Cn1(O, Ci(O, and Ccross(0 defined in Section 
2. Figures 3 and 4 show the time dependence of Ci,(0, j = 2, 
3, 2', and 3', for models I and II. In the calculation of the time 
correlation function of model II involving BCL and BCM, we did 
not include the periods of time over which, due to isomerization, 
^BCL(0 and KBCM(0 differed markedly from their average. The 
fact that these isomerizations can occur spontaneously indicates 
some significant degree of nonlinearity in the proteic system's 
response. Furthermore, in view of these isomerizations, it would 
seem that any viable mechanism for electron transfer cannot 

200.0 

Time/fs 

Figure 3. Time correlation functions of the energy gaps for model I. We 
show results for Cn(t)/Cn(0) (continuous line), Cu(r)/Ci3(0) (short-
dashed lines), Ci2'(0/Ci2'(0) (dashed line), and Ci3-W/Gy(O) (long 
dashed line). 
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Figure 4. Time correlation functions of the energy gaps for model II 
(lines same as in Figure 3). 

require a very limited range of values for KBCL- We will focus 
on these aspects shortly. 

For both models we observe an initial fast decay of the 
correlation function followed by a slow relaxation regime. 
However, the relaxation lifetimes of the two regimes are different 
for the two models. The fast relaxation has a decay time of ~ 50 
fs for model I, while it is ~100 fs for model II. In the same 
fashion, in the slow relaxation regime, the correlation functions 
calculated for model I decay more quickly than for model II. This 
slow decay of the time correlation functions is suggestive of glassy 
behavior in the RC. This behavior is more marked in the 
simulation with model II. 

4.3. Shape of the Free Energy Surfaces. The straightforward 
mapping between the energy gaps and the fields coupled to the 



Primary Electron Transfer in a Photosynthetic Reaction J. Am. Chem. Soc, Vol. 115, No. 10, 1993 4183 

'\ M \ 

\ 1 
\ ! 

' V : 
A£/kcal mol"1 AE/kcal mol"1 

Figure 5. Energy gap free energy surfaces in units of k^T for model I. 
The filled circles are the results from simulations and the dashed lines 
are a second-order polynomial fit. The left panel shows the free energy 
F13(AE) and the right panel shows the free energy Fu(AiT). 

electron transfer makes it possible to derive the diabatic free 
energy surfaces for electron transfer from our simulation. The 
probability distributions for these gaps are defined in eq 2.10. 
We compute the prescribed distributions from histograms based 
on our trajectories. The corresponding free energies are 

F1J(^E)=-Ic6TInP1J(AE) (4.5) 

During an equilibrium simulation only a small region of the 
available phase space is sampled. The range of this region grows 
with the length of the simulation. In our calculations which lasted 
typically ~60 ps, we found that the system accessed regions of 
the free energy surface separated at most by 7^BJT. This was 
sufficient to have a good estimate of the shape and curvature of 
the diabatic surfaces. In order to explore regions of phase space 
of higher free energy, some type of non-Boltzmann sampling 
would have had to be performed. 

As typical examples of our results, in Figures 5 and 6 we present 
the free energy functions for the SP* — SP+BPL" and SP* — 
SP+BPM- energy gaps for models I and II. For both models 
these are parabolic within the statistical error. In the fit that we 
carried out to determine the curvature, the additional inclusion 
of the cubic term improved the x2 of the fit by at most 1%. 

This result is similar to the findings of previous simulations of 
medium response in polar liquids.31 Parabolic fits to estimates 
of energy gap free energies of the RC are also found in ref 16. 
The harmonicity of the energy gap energetics is consistent with 
the electron-transfer model described in Section 2 where we 
assumed a linear coupling between the three-level system and the 
bath. The harmonic behavior of the polarization free energy 
surface was first suggested by Marcus in his early works on electron 
transfer.14 

The curvatures of the free energy parabolas calculated with 
model I are larger than those of model II. Since the major 
difference between the two models is the inclusion in model II 
of crystallization waters, hydration seems to increase significantly 
the reorganization energy of RC. In view of this result, hydration 
appears to play an important role in electron transfer. 

Since equilibrium response of the solvent well approximated 
by a linear model does not imply a real time linear response, it 
is important to investigate the relaxation of the medium after 
electron transfer. For this purpose we have performed nonequi-
librium molecular dynamics simulations for model I where one 
electron from the special pair was transferred instantaneously to 
the accessory bacteriochlorophyll on the L side. The trajectories 
illustrated in Figure 2 would indicate that the assumed linear 
behavior might be most problematical with regard to the accessory 
bacteriochlorophylls. The transition we considered was from a 
neutral SP* state to a charge-separated SP+BCL- state. As is 

(31) Kuharski, R. A.; Bader, J. S.; Chandler, D.; Sprik, M.; Klein, M. L.; 
Impey, R. W. J. Chem. Phys. 1988, 89, 3248. 
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Figure 6. Energy gap free energy surfaces in units of ka T for model II. 
The filled circles are the results from simulations and the dashed lines 
are a second-order polynomial fit. The left panel shows the free energy 
F)3(AE) and the right panel shows the free energy F13(AS). 

consistent with eqs 4.1 and 4.2, the charge distribution of the 
latter state was obtained by adding charges 0.125e and -0.25e, 
respectively, to the nitrogens of the SP and BCL. The nonequi-
librium runs started from a few equilibrated configurations of 
particles and velocities in the neutral SP* state. At time zero, 
the electronic state was switched from SP* to SP+-BCL". The 
system was then allowed to evolve for a few hundred femtoseconds 
with the new charge distribution governing the molecular 
dynamics. During this period, the energy gap, AE12 as given by 
eqs 4.1—4.3, was monitored. If the system exhibits linear response, 
the averaged nonequilibrium energy gap relaxation, AEn(t) 
should obey the fluctuation dissipation theorem, namely 

AE12(I)-(AEn)2_ C12(I) 

AEn(O)-(AE n)2~ C12(O) 
(4.6) 

where the overbar indicates an average over many nonequilibrium 
trajectories, each prepared as described above. The ultimate 
equilibrated value of A-Ei2(O, namely, (AEn)2, was computed 
from a separate 20-ps run with the state 2 potential surfaces. 
Note that the relaxation examined here takes place on the diabatic 
state 2, but the correlation function Ci2(O is computed on state 
1 (eq 4.4). Thus, eq 4.6 is a severe test of linear behavior. One 
might imagine comparing the nonequilibrium relaxation in state 
2 with autocorrelation functions computed for that same state. 
Such a comparison, however, would not fully test the reduced 
model Hamiltonian discussed in Section 2. Not surprisingly, 
when put to the test, we can observe deviations from linear 
behavior. 

In Figure 7a, we compare the calculated nonequilibrium 
relaxation with that predicted by linear response. In order to 
obtain an acceptable statistical error, the nonequilibrium results 
are averaged over 140 runs. Each simulation was run for 250 fs. 
We observe that many of the fast modes predicted by linear 
response are present in the nonequilibrium experiment. However, 
the nonequilibrium curve decays to the long time average in the 
final state more slowly than the equilibrium prediction. In Figure 
7b, we show the result of a set of 60 more nonequilibrium 
simulations carried on for 600 fs each. The statistics, of course, 
are not as good as that in Figure 7a. Nevertheless, we see that, 
after 0.6 ps, the nonequilibrium runs are nearly converged to the 
equilibrium prediction. Our findings show that the dynamical 
response of the proteic environment has noticeable nonlinear 
behavior. After electron transfer a structural relaxation on a 
picosecond time scale occurs. 

The nonlinear behavior we have exhibited is of a quantitative 
and not qualitative nature. Further, it is observed in the dynamics 
and not the free energy surfaces. We therefore adopt the harmonic 
model of Section 2 as a reasonable caricature. In Section 5 we 
first discuss how the parameters of the reduced model have been 
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Figure 7. (a) Comparison between equilibrium correlation function and 
nonequilibrium relaxation. The continuous line is the linear response 
prediction based upon the time correlation of 56 ps of equilibrium 
simulation. The dashed line has been computed by averaging 140 
nonequilibrium MD runs. The estimated statistical errors are within the 
thickness of the lines, (b) Comparison between equilibrium correlation 
function and nonequilibrium relaxation. The continuous line is the linear 
response prediction based upon the time correlation of 56 ps of equilibrium 
simulation. The dashed line has been computed by averaging 60 
nonequilibrium MD runs. The statistical uncertainties are larger in this 
graph than in (a); see text for explanation. 

obtained from simulation and then derive the diabatic free energies 
for electron transfer and the spectral densities of the relevant 
fields. 

5. Scaled Reduced Model 

Model II is the more realistic of the two atomistic models. It 
includes the crystallization water molecules and has a more 
detailed electrostatic description of the chromophores than model 
I. We limit our discussion now to the results obtained with model 
II. 

As described in Section 2 and justified in Section 4, the electron 
transfer on the L (or M) branch can be roughly modeled in terms 
of three coupled harmonic diabatic surfaces. Using the simulation 
results for average energy gaps and fluctuations, we have evaluated 
the parameters in the model. In particular, we have used eqs 2.4 
and 2.6 to identify Ae2 and At3. Further, we have used the 
curvatures of the simulation free energies Fi2(A£) and F13(AE) 
together with eqs 2.3, 2.5, 2.7, and 2.13 to identify aj, a x , and 
b. The parameters obtained in this way are entered in Table I. 
We call these "basic parameters", as they arise straightforwardly 
from the molecular modeling we have performed. Notice that 
«H and a j . for the L branch are significantly smaller than those 
for the M branch. In other words, the mean square fluctuations 

Table I. Basic Parameters 

Af2, 
branch kcal mol-1 

L -33.68 
M -36.45 

Ae3, 
kcal mol" 

-81.3 
-68.5 

Table II. Electronic Energies 

transition 

SP* — SP+BCL-
SP* — SP+BPL-
SP* — SP+BCM" 
SP* — SP+BPM 

«11, 
1 kcal mol-1 

13.74 
22.88 

A e / V 
kcal mol-1 

23.7 
23.4 
24.7 
25.8 

kcal mol-1 b 

8.38 0.551 
10.94 0.632 

kcal mol-1 

24.6 
32.31 
31.2 
33.9 

" The 1 - • j energy difference computed by Thompson and Zerner, 
ref 22. * Vj denotes the electrostatic contribution to the 1 -»,/ basic energy 
gap from the chromophores and four histidine amino acid side chains. 

pertinent to electron transfer are much smaller in size on the L 
branch than on the M branch. This finding of greater rigidity 
of the L side is consistent with the fact that the L side contains 
more aromatic (nonpolar) residues than the M side. This contrast 
in rigidity, we will see, is related to the marked differences in 
activity between the L and M branches of the RC. 

The diabatic curves defined by these parameters need to be 
adjusted to incorporate two important physical aspects of the 
system. We turn to these aspects now. First, we need to account 
for the ionization potentials and electron affinities associated 
with moving the electron from one chromophore to another. 
Second, we need to account for the role of electronic polarization 
in the proteic environment. Both are beyond the scope of a purely 
classical molecular dynamics simulation. We treat the first by 
incorporating information from Thompson and Zerner's com­
putation of excitation energies for the chromophores.22 We treat 
the role of electronic polarization by a scaling of our basic values 
for a|, a±, and the corresponding solvation contributions to the 
average energy gaps. Justification for this scaling is discussed 
in the Appendix. Thompson and Zerner22 performed INDO/S 
SCF-CI calculations for the electronic energies for the system 
composed of the four bacteriochlorophylls, the two bacteriopheo-
phytins, and the four histidine amino acid side chains that 
coordinate with the Mg atom of the bacteriochlorophylls. In 
Table II, we report the excitation energies they calculated for the 
four charge transfer states relative to the singlet SP* electronic 
energy. 

As defined in eqs 4.1-4.3, the basic energy gap includes 
electrostatic contributions from the chromophores, histidines and 
surrounding proteic environment. In order to use Thompson and 
Zerner's computed electronic energies, we have to first remove 
from the basic electrostatic energy gaps the contributions from 
the chromophores and histidines. We let Vj denote this elec­
trostatic contribution to the 1 -*j energy gap. This contribution 
was computed explicitly by running another 10-ps simulation of 
the reaction center in the neutral state in the same conditions as 
before. We report this contribution in Table II. Because of the 
rigidity of the chromophores, the overall error bars on those 
energies are small, 0.5 kcal. We let Ae/0) denote the energy 
difference for the 1 -—j transition computed by Thompson and 
Zerner. Then 

would be the classical average energy gap which incorporates 
Thompson and Zerner's numbers. The term in square brackets 
is a solvation contribution to the energy gap. In the Appendix 
we show that the influence of electronic polarization for this 
quantity may be incorporated by scaling the classical simulation 
result by the factor l/«„. This scale factor rests on the 
approximation that the electronic polarizability is isotropic and 
uniform throughout the proteic environment.) Hence the phys­
ically relevant average energy gaps, Ae,, are obtained from the 
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Table III. 
Surfaces 

branch 

L 
M 

Scaled Parameters Governing Diabatic Free Energy 

A«2, Ac3, &h <*x> 
kcalmol~' kcalmol"1 kcalmol"1 kcalmol"' b 

18.9 -2.4 7.23 4.41 0.551 
21.9 7.63 12.0 5.76 0.632 

classically simulated gaps, A«;, by the transformation 

Ae,- - Aij = Ae/0) + (Ac, - vj)/t. (5.1) 

These adjustments require a value for the "optical dielectric 
constant", «„. We fit this number empirically so as to ensure that 
the computed thermodynamic driving force for SP* - • SP+BPL" 
agrees with experiment. In particular, the scaled model gives the 
driving force 

AG13 = - (a , /2) + Ae3 (5.2) 

£|l/kcal mol~' £.',/kcal rnol ' 

Figure 8. (a) Diabatic free energy surfaces of the three-level spin-boson model as calculated by the atomistic model II for the L branch. See text for 
explanation of the parameters used in the plot. Note that <? j . = 0 in this plot, (b) Diabatic free energy surfaces of the three-level spin-boson model 
as calculated by the atomistic model II for the M branch. See text for explanation of the parameters used in the plot. Note that &'x = 0 in this plot, 
and that S\ is a different variable than <J| in (a). 

M side of SP (and a corresponding +e on the four nitrogens on 
the L side), we find that the basic energy gaps change by no more 
than 0.5 kcal. In other words, the changes are very small. They 
are a percent or less of the totals (see Table I). 

Thus, it would appear that our conclusions will not be altered 
by the use of more sophisticated charge distributions of the central 
chromophores in the molecular dynamics calculations. On the 
other hand, at this time we are not able to assess the accuracy 
of Thompson and Zerner's energies. However, they enter into 
our analysis in a straightforward fashion, and adjustments are 
simple to make with the data provided herein if and when these 
numbers are revised. 

Now consider the diabatic free energy surface implied by the 
scaled parameters listed in Table III. The S x = 0 slice of these 
functions is plotted in Figure 8. (Slices at other values of Sx 

provide a similar perspective.) We see that the intersection of 
states 1 and 3 (coinciding with the SP* - • SP+BPL" transfer) 
is slightly into the inverted region with almost no activation energy. 
In contrast, the corresponding intersection of states 1 and 3' on 
the M branch occurs in the normal region with an activation 
energy of ~4kBT and an endothermic AGi3' « 1.6 kcal/mol. 
This difference provides an explanation of the inactivity of the 
M branch within our model. 

Next, notice the location of the accessory bacteriochlorophyll 
states, 2 and 2'. The minima of both surfaces lie approximately 
15 kcal/mol above that of state 1. This finding agrees well with 
Thompson and Zerner's estimates of the solvation of states 2 and 
2'. Using dielectric continuum theory, they predicted that states 
2 and 2' lie 14.4 kcal/mol above the initial SP* state.22 The 
relative positioning that we predict for the charge-transfer state 
on the accessory bacteriochlorophyll implies that the primary 
electron transfer does not occur by a two-step mechanism. On 
the other hand, in Section 7, we argue that superexchange can 
support electron transfer on the L branch with a reasonable choice 
of the mean coupling matrix element, H - {\H^P^l)1'2. 

An analysis of the electron transfer dynamics requires the power 
spectra of the energy gap fluctuations. We have computed these 
quantities for model II by Fourier transforming the time 
correlation functions, eq 2.14, scaling the zero time values of 
C||(f) and Cj.(0 to coincide with k^Tty and kBT&x, respectively. 
That is, 

1 

where a\\ = a||/«« is the scaled nuclear polarization susceptibility. 
See eqs A.16 and A.17. The quantity &\/2 is the scaled 
reorganization energy15 (Xi3) associated with states 1 and 3. The 
corresponding scaled expression for Xj2 is given by b2a\\/2 + a±/2. 

With eqs 5.1, 5.2, and the data tabulated in Tables I and II, 
we can find a value of e„ such that AGi 3 has the experimental 
value of-6 kcal/mol.2021 This fitting yields e„ = 1.9, which is 
in reasonable accord with the optical dielectric constants of most 
dense fluids (including room-temperature liquid water, for which 
e* » 1.8). We regard this finding, that a physically reasonable 
value of c. brings our computed results into agreement with 
experiment, as an indication of success in our modeling of the 
RC. In Table III, we compile the parameters associated with the 
shifted and scaled reduced model. The parameter b does not 
change from Table I to Table III because we assume the electronic 
polarization fluctuations are distributed isotropically throughout 
the proteic system. Hence, a± and ag are scaled by the same e„, 
and eq 2.7 remains satisfied with no scaling of b. 

Before discussing the nature of the resulting diabatic surfaces, 
we comment on the robustness of our results. The molecular 
dynamics calculations employ symmetric charge distributions on 
the chromophores. We have examined the possibilities of errors 
associated with these simplified distributions by carrying out 
additional trajectories with a dipolar distribution on the special 
pair. Indeed, experiment has determined that SP* is polar.632 

By moving a full electronic charge to the four nitrogens on the 

(32) Lockhart, D. J.; Hammes, S. L.; Franzen, S.; Boxer, S. G. J. Phys. 
Chem. 1991, 95, 2217. 

C1(O - C1(O = ^8Ta1C1(OZC1(O) « j - C11(O (5.3) 

and similarly for C± (0- We have also scaled Ccross(0 by dividing 
by«.. Whether or not CcroM(0 should be scaled seems unimportant 



4186 /. Am. Chem. Soc, Vol 115, No. 10, 1993 

200 

150 

Marchi et al. 

100 

I L 

50 

400 

800 

600 

J 400 

200 

0 

40 

20 

-20 

I I ! 

! 
i 

' \ 

• / 
Ii 

M 

i 

400 600 1200 160C 

400 200 

Figure 9. (a) Spectral densities C|(w) (solid line), C1 (w) (dashed line), 
and C1Cf0Ss(W) (dot-dashed line) for the L branch. Inset shows these 
functions at large frequencies, (b) Spectral densities Cj(w) (solid line), 
C±(ic) (dashed line), and CCr0Ss(W) (dot-dashed line) for the M branch. 
Inset shows these functions at large frequencies. 

since these cross correlations are relatively small. A Blackman 
window of 2.4 ps width was used in the Fourier transformation 
in order to remove artifacts in the spectrum that result from the 
finite length of time of the simulated correlation functions.33 The 
three Fourier transforms for both the L and M branches are 
plotted in Figure 9. We see that the power spectra of £\\ and S± 
have wide continuous ranges. It would seem difficult to capture 
this behavior with models involving only a few oscillators. 

The spectra for the branch L and M have similar features, but 
differ in the details. In the region above 200 cm-1, the differences 
are small. At low frequencies, however, the peaks differ in position 
and intensity. Additionally, the series of peaks between 98 and 
160 cm-1 in the SP* -* SP+BPL" spectral density is replaced by 
one single peak around 190 cm-' in the SP* - • SP+BPM- with 
an intensity twice as low. Also note that €\\ and S L in our model 
are not only orthogonal at t = 0 (see condition 2.7), but as shown 
in Figure 9, a and b, they are approximately orthogonal in the 
entire frequency range and, therefore, the time domain. 

6. Comparison with Previous Simulations 

As we mentioned in the Introduction, in the past there have 
been two groups that have carried out simulation studies of 
photosynthetic reaction centers. Schulten's group has carried 
out a few nonequilibrium calculations of the reaction center of 
Rps. viridis at various temperatures.'7 Their approach is limited 

(33) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; 
Clarendon Press: Oxford, 1987; pp 208-211. Harris, F. J. Proc. IEEE 1978, 
66, 51-83. 
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Figure 10. Energy gap A£ ]3 for one nuclear configuration of model II 
as a function of the electrostatic potential energy cutoff radius. 

to the study of the electron transfer reaction along the L branch, 
and they have performed no calculations concerning the inactivity 
of the M branch. Their nonequilibrium calculations consisted of 
only one run for each temperature in which one electron is 
transferred from SP to BPL. They inferred a linear behavior of 
the proteic media by comparison with an equilibrium 20-ps run. 
In this paper, we have shown that many nonequilibrium runs and 
long equilibrium simulations are needed to achieve sufficient 
statistics for the meaningful studies of linear behavior. We find 
statistically significant differences between equilibrium and 
nonequilibrium time correlation functions. 

The electrostatics of Schulten's model is very similar to ours 
in model II. Nevertheless, the electrostatic contributions to the 
energy gaps reported by Schulten and co-workers differ from 
those that we compute by factors ranging from 3 to 8. Part of 
the disparity may be due to their truncations of Coulombic 
potentials. In ref 17b, a 10-A cutoff is employed, while in ref 
17d, a 40-A cutoff is employed. Curiously, in both cases, the 
same value of the average SP* -»• SP+BPL" energy gap is reported, 
-20 kcal/mol. To check the effect of radial cutoff on the computed 
energy gap, we have carried out a calculation of the energy gap 
between SP* and SP+BPL- versus the electrostatic potential 
cutoff. This was done for the X-ray structure resolved at 2.3 A. 
We included in the calculation the contributions from each residue 
and chromophore within the cutoff range of one of the redox 
sites. Our result in Figure 10 shows the expected oscillatory 
character typical of coulombic sums. We conclude that without 
accounting for screening by some other means, calculations at 
cutoffs lower than 60 A are unreliable. We note that the four-
protein complex considered in this work is approximately 120 A 
in diameter. With this distance in mind, one can understand why 
the Coulombic sums converge at a cutoff near 60 A. 

Warshel, Parson, and their co-workers16 have studied the 
fluctuations of the energy gap and in one case, for the electron 
transfer from BPL to the quinone,16b the spectral density and the 
diabatic free energy surfaces were calculated. Their diabatic 
free energies are defined in similar ways to ours, but their 
calculations of the contributions from various components are 
significantly different. In ref 16d, which is most related to the 
work in this paper, they estimated the free energies of the charge-
separated states by a static calculation on the experimentally 
determined X-ray structure. Reorganization energies were also 
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estimated. The electrostatic contributions are computed by a 
truncated Coulomb sum and a dielectric continuum estimate for 
the effects of contributions beyond a short cutoff. Atomic 
polarizability is included through a classical computation of 
induction effects. Experimentally measured redox potentials of 
the chromophores in solution are used to account for the electronic 
energies of the unperturbed chromophores. The end result is a 
positioning of the diabatic energies that is very different from 
those we have found. Most significantly, they predict an unrelaxed 
SP+BCL- state at the same energy as SP*, and a SP+BPL- lower 
in energy by about 2 kcal/mol. This arrangement would support 
a two-step mechanism in the primary electron transfer, something 
which is incompatible with our results. 

Our accounting of atomic polarizability is through the scaling 
which has quantum mechanical elements as discussed in the 
Appendix. Our accounting of dielectric screening is through the 
explicit addition of all Coulombic interactions in the proteic 
system. The surrounding polar environment is not accounted 
for, but this is far from the central chromophores. Finally, our 
use of experimentally calibrated INDO calculations to obtain 
the necessary redox potentials avoids theoretical uncertainties as 
to how one should best extract these numbers from solution-
based experiments. 

7. Conclusion 

Our most important findings are summarized by Figure 8, 
which shows cuts through the diabatic free energy surfaces 
governing the primary electron transfer. The thermodynamic 
driving force for the forward reaction, AGi 3, is fit with a reasonable 
value of«» « 1.9. With no further adjustment, the simulation 
model predicts that the forward reaction is nearly activationless. 
It also predicts that the M branch is inactive as AGi3' is found 
to be positive. Both predictions about the respective activities 
agree with experiment. Further, according to the model, the 
mechanism to pass from state 1 (SP*) to state 3 (SP+BPL-) must 
evolve via superexchange with state 2 (SP+-BCL-). Let us now 
consider simple estimates of the primary electron transfer rate 
based upon superexchange and the diabatic surfaces we have 
computed. 

The golden rule formula for the rate constant (treating the 
nuclear coordinates as classical variables) is 

k^3 = (2ir/h)K2 (S(AE1J)1 (7.1) 

where K is the effective coupling between states 1 and 3. With 
superexchange involving state 2, K is given by 

K=(H2JAEn)* (7.2) 

where H1 = \H\ ̂ Hn\, and the asterisk indicates that the quantities 
within the brackets are to be evaluated at the nuclear configu­
rations where AEi 3 = O. (We neglect contributions to K that are 
higher order in H/AEn since, in light of our computed values for 
A£|2, reasonable estimates of H would demand that H« AEn-) 
With parabolic free energy surfaces intersecting with essentially 

(34) We base our assertation of physical reasonableness on what we know 
to be true for the aqueous ferrous-ferric exchange (see: Logan, J.; Newton, 
M. D. J. Chem. Phys. 1983, 78, 4086. Marchi, M.; Chandler, D. J. Chem. 
Phys. 1991,95,889-894). For this relatively simple system, both wave function 
and path integral calculations give couplings of the order of 100 cnr' for redox 
sites separated by about 6 A. Given the nature of the interactions, we would 
expect similar couplings between two neighboring porphyrin rings. Never­
theless, nearest-neighbor electronic coupling matrix elements roughly an order 
of magnitude smaller than those we predict have been obtained with 
semiempirical quantum mechanical methods. A representative selection of 
such methods applied to the RC can be found in: Plato, M.; Mobius, K.; 
Michel-Beyerle, M. E.; Bixon, M.; Jortner, J. J. Am. Chem. Soc. 1988,110, 
7279-7285. Scherer,P.O.J.;Fischer.S.F.Chem.Phys. 1989,131,115-127. 
The discrepancy between these predictions and our findings remains unresolved. 
The discrepancy is not, however, necessarily incompatible with our acceptance 
of the energies reported in ref 22. The couplings or off-diagonal elements 
depend sensitively upon the tails of electron wave functions. A semiempirical 
calculation calibrated for diagonal elements can give accurate on-site energies 
yet inaccurate interstate couplings. 
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Figure 11. Temperature dependence of ((SSj)2)-1/1. Here, ((SSj)1) has 
been evaluated from the spectral density with the formula < (5<S|[)2> = 
^(4Ir)-1Jo" da> Cj,(w)u coth(0hu/2). 

no activation energy, eqs 7.1 and 7.2 yield 

fc,_,« h VAe2/ i> (*B7fc,) 1/2 
(7.3) 

Evaluation at room temperature based upon the entries in Table 
III gives fci-3 « (AT/200 crar])4/25 ps. Hence, an electronic 
coupling between nearest-neighbor chromophores of 250 cm-' to 
300 cm-' is consistent with the experimentally observed4'8 time 
scale for the primary transfer, 3 to 10 ps. Such values for electronic 
couplings seem physically reasonable.34 

There has been some discussion in the literature relating the 
singlet-triplet splittings of states 1 and 3 that would indicate the 
nearest-neighbor couplings are significantly smaller than 102 

cm-1.35 By invoking only states 1, 2, and 3 with superexchange 
coupling, Marcus has related the measured splittings36 to Hn, 
H2I and the relative positioning of the three surfaces. When we 
combine the measured splittings withour computed diabatic 
surfaces, Marcus' relationship yields H « 50 cm-1, nearly an 
order of magnitude smaller than we find based on our analysis 
of the electron transfer kinetics. We suspect, therefore, that the 
mechanism for the singlet-triplet splittings involves more states 
than simply 1, 2, and 3. In view of this uncertainty, however, it 
is worthwhile to compare predictions of our model with exper­
imental observations that are independent of these nearest-
neighbor couplings. 

For example, the experimental observation that the forward 
transfer rate increases with lowering of temperature30 is consistent 
with our results. We can already see this tendency in the classical 
result, eq 7.3. The increase in rate is due to the diminution of 
<(5<o)()2>i with decreasing T. In the classical limit, this rms 
fluctuation is given by k^Ta^. In reality, however, zero-point 
motion prohibits it from vanishing at T-* 0, and the temperature 
dependence of the rate is less dramatic than might be inferred 
from eq 7.3. We have carried out the quantal evaluation of 
((SGl)2) \ with the aid of the spectral density given in Figure 9. 
Our result is graphed in Figure 11. It indicates a nearly 2-fold 
increase in rate in passing from room temperature to cryogenic 
temperatures. This behavior is in reasonable accord with 
experiment.30 At this stage more detailed calculations for low-
temperature experiments is not merited since the diabatic surfaces 
we have computed are probably not yet positioned to the extreme 
accuracy required to analyze cryogenic behavior. 

As another example, we consider the rate of the back-reaction 
to the unexcited SP, i.e., SP+-BPL- — SP. For the Rhodobacter 

(35) Marcus, R. A. Chem. Phys. Lett. 1987, 133, 471-477. Bixon, M.; 
Jortner, J.; Michel-Beyerle, M. E. Biochim. Biophys. Acta 1991,1056, 301-
315. 

(36) Moehl, K. W.; Lous, E. J.; Hoff, A. J. Chem. Phys. Lett. 1985,121, 
22-27. See also ref 37. 
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sphaeroides reaction center, experiment37 has determined that 
its rate constant, fcb, is approximately 7000 times smaller than 
that of the forward SP* — SP+-BPL- rate constant, (t,^3- We 
can compute a rate for the back-reaction from our computed 
spectral densities, and the measured vertical energy gap38 between 
SP and SP*. The assumption that the nearest-neighbor electronic 
coupling between SP and BCL is approximately the same as that 
between SP* and BCL leads us to the effective superexchange 
back-reaction coupling of 

Kb = (H2IAE23)* (7.4) 

Here, the superscript * indicates that AE23 is to be evaluated at 
the value of S\\ where A£03 = Ho-Hi = 0. The quantity H0 is 
the diabatic surface for the unexcited SP, 

H0 = H,- Ae01 (7.5) 

where A«oi «* 30(±3) kcal/mol is the above-mentioned measured 
vertical excitation energy. According to eqs 7.4, 7.2, and our 
computed diabatic surface parameters, Table III, the measured 
A«oi gives Kb« 0.56A". Further, the value of A«oi and our diabatic 
surface parameters place the intersection of the SP state with 
state 3 to be in the inverted region with a classical activation 
energy of approximately 28 kcal/mol. This large activation energy 
leads to the classical estimate, fcb

cl)Jk1^3 « (0.56)2 exp(-45) = 
10~20. The difference between this extreme underestimate and 
the experimental observation of kb = lO^fci-^ is largely due to 
nuclear tunneling. Nuclear tunneling provides the dominant 
pathway for the back-reaction because the 0 and 3 surfaces are 
spatially very close at their extreme inverted intersection. To 
compute the rate, one must therefore use the quantum version 
of the golden rule rate constant. With the stationary phase 
approximation,39 it yields 

kb = (2ir/ft)*:by(r*)/2ir**"«*)|1/2 (7.6) 

where v(t*) and v"{t") are respectively the function and second 
derivative of 

v(t) = exp|-(l/4irft)Jo"dw/3C||(aj)[cosh((3ftw/2) 

- c o s h ( ^ - « A ] / t o sinh()3fta>/2)| exp(AG03r/ft) (7.7) 

evaluated at its extremum t = t* with AG03 = AGn + Ae0I = 24 
kcal/mol. From these formulas, we have evaluated kb giving kb 
«IO""6^^. The classical and quantal results differ by 14powers 
of ten! The spectral density we have computed from our model, 
C||(co), accounts for 14 of the 16 orders of magnitude in 
fcb

cl)/&b"
pt). Through sensitivity analysis, we have determined 

that no reasonable alteration of C|j(<o) will account for the 
additional two orders of magnitude. Nor will uncertainties in 
Aeoi, nor even a 5-kcal/mol variation in the position of H1, account 
for this factor of 102. However, it is surely possible that 
anharmonic contributions to our diabatic free energy surfaces 
may alter the harmonic estimate of the high activation energy 
by 10%. This possible variation, 3 kcal/mol, would account for 
a factor of 102. In that case, better agreement with experiment 
would be fortuitous. This possibility of anharmonic contributions 
can be studied by future computer simulations which could 
examine the diabatic surfaces at high-energy configurations 
through the type of umbrella sampling technique exploited in ref 
31. It could also be that the difference between our calculation 

(37) Norris, J. R.; Bowman, M. K.; Budil, D. E.; Tang, J.; Wraight, C. A.; 
Closs, G. L. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 5532-5536. 

(38) Kirmaier, C; Holten, D. Photosynth. Res. 1987, 13, 225-260. 
(39) Van Duyne, R. P.; Fischer, S. F. Chem. Phys. 1974,5,183. See also 

Appendix 4 of ref 19. For the spectral density and driving force of the back-
reaction we have computed the golden rule rate constant numerically by 
distorting the contour of integration to pass through the stationary phase point 
t *. This exact numerical calculation agrees with the stationary phase estimate, 
eq 7.6, to better than 10%. The stationary phase estimate should not be 
confused with the semiclassical approximation employed in, for example, ref 
16b. 

and experiment is simply a manifestation of the differences 
between the sphaeroides system (for which the experiments have 
been done) and the viridis system (for which our present 
calculations are done). This possibility could also be examined 
with future molecular dynamics studies as well as with experiment. 

Concerning time scales, bear in mind that 1 to 10 ps is not 
much longer than the relaxation times we have observed for nuclear 
motion. Thus, a simple rate constant description for the primary 
charge transfer may be inappropriate. Experimental observations 
of the SP* population decay may therefore involve a coherence 
between the nuclear motions and the electronic transitions. Jean 
et al.40 have considered the role of such coherence in a related 
problem (though the spectral density they employ would not seem 
realistic for the RC). Exact quantum dynamical calculations 
based upon our computed spectral densities could resolve the 
importance of quantum coherence in the RC primary electron 
transfer. Given that the energy gap fluctuations decay primarily 
on a subpicosecond time scale (see Figures 3 and 4), it is unlikely 
that coherence associated with these particular motions are 
responsible for the observation of nonexponential decay in the 
SP* state on post-picosecond time scales. Rather, according to 
our model, motions affecting K must be responsible for the 
nonexponential relaxation. 

Future work should address these dynamical issues. We hope 
that accurate calculations of the nearest-neighbor couplings, Hn 
and H2), will become available. Modeling work on mutated 
versions of the RC would also be worthwhile. Of course, just as 
we have found necessary herein, this type of extension will require 
input from accurate quantum chemical calculations. 

In general, we believe this paper demonstrates the power of 
molecular dynamics studies of biologically relevant systems. For 
well-defined molecular models, with sufficient care, the method 
can provide clear and robust predictions of the molecular 
mechanisms of biological function. 
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A. Appendix: Fast and Slow Polarization 

In relating our classical simulation to experiment, we reduced 
the classical response functions and solvation contributions to the 
energy gaps by the ratio of the Pekar factor to the Born factor, 

(i-0/O-i)-"-
The vertical energy gap may be expressed as the sum of a 
reorganization energy, X, and a driving force, AG. For X, the 
necessity for such a correction involving the optical dielectric 
constant, e„, would seem apparent from Marcus's early work on 
electron transfer.14 However, it can be shown that the same 

(40) Jean, J. M.; Friesner, R. A.; Fleming, G. R. J. Chem. Phys. 1992, 96, 
5827. 



Primary Electron Transfer in a Photosynthetic Reaction J. Am. Chem. Soc, Vol. 115, No. 10, 1993 4189 

correction applies to the AG term. We outline here an argument 
that establishes these corrections and clarifies the underlying 
physics.41 

The principal issue involves the different roles of slow and fast 
polarization modes. The former is the result of the nuclear 
reorganization in response to and affecting the redistribution of 
the transferring charge. The latter refers to the very high-
frequency electronic polarization of the environment. Both types 
of polarizations contribute to the zero-frequency response and 
dielectric constant, t. In contrast, the slow polarization modes 
are most pertinent to electron transfer. The distinction requires 
a quantum mechanical analysis that is beyond the scope of a 
classical computer simulation which utilizes potentials of inter­
action that are designed to duplicate the zero-frequency dielectric 
behavior. Nevertheless, the classical simulation provides infor­
mation from which the quantum mechanical result can be 
reasonably estimated. 

To see why, consider the following two-state system coupled 
to a bath (the generalization to three states is straightforward): 

H = -K[\l)(2\ + \2)(l\] + \\)[HB-S{s)-S^](l\ 

+ \2)[HB + a(s) £(s) + a(f) 6(f) + Ae(0)]<2| (A.2) 

where HB is a bath Hamiltonian controlling the slow and fast 
Gaussian polarizations, €(s) and <S(f\ respectively. The constant 
A«(0) allows for asymmetry resulting from differences in electronic 
energies at the different sites, while the parameters a<s) and a(f), 
which would be 1 in a symmetric system, allow for asymmetry 
in the system-bath coupling. The inclusion of a possible 
asymmetry in the system-bath coupling is irrelevant to the energy 
differences in the classical case as can be demonstrated by a 
simple transformation of variables. In the quantal case, however, 
the asymmetry could be important, and the fast polarization could 
have a different asymmetry than the slow polarization. All 
possible asymmetries are accounted for with a(f\ a{s\ and Ae(0). 
Hence, the model can be constructed such that 

<£(f))B = <£(S)>B = 0 (A.3) 

where (...)B indicates the equilibrium average over the bath 
uncoupled to the two-state system. 

According to the Hamiltonian A.2, the action in Euclidean 
time is" 

S = STLS + SB[d?(f)(0, S(s)(0] + ft"1 jQ
Phdt {A,(0[£(f)(0 

+ <?(s)(0] - A2(0[a(f)«(n(0 + aw6{s)(t) + Ae(0>]} (A.4) 

where STLS is the action for an unperturbed symmetric two-level 
system with interstate coupling K, SB denotes the action of the 
bath, and 

A1(O = I-A2(O (A.5) 

is 1 if the system is in state 1 at time t and zero otherwise. The 
fast electronic polarization can be removed through standard 
Gaussian functional integration yielding the reduced action 

S = 5TLS + SB[£(S)(0] + h-'j^dt {A,(0<?(s)(0 

- A2(o[a<v>(o+A<(°>]}+\h-' j;ftd/ /; v [A1(O 
- ^0A2(OHA1(O - a ( f ) A 2 (* ' ) ]<£ ( f WV)> B 

(A.6) 
where SB is a quadratic (and perhaps renormalized) functional 
of (JW(O-

(41) The argument is a slight generalization of that which we employed 
in: Gehlen, J. N.; Chandler, D.; Kim, H. J.; Hynes, J. T. J. Phys. Chem. 1992, 
96, 1748. See also: Gehlen, J. N.; Chandler, D. / . Chem. Phys. 1992, 97, 
4958. 

No approximation has been made in arriving at eq A.6 from 
A.4. Having removed a degree of freedom, <£(f), the resulting 
action is nonlocal in time. Thus, in general, a Hamiltonian 
description would no longer be possible. But for the special case 
in which d?(f> is a fast variable (fast on the time scales set by h/K 
and /3ft), further reduction is possible. In particular, the 
correlation function in the last term of eq A.6 is effectively a 
delta function, 

<6 ( f )(0£ (V)>B= ha^8(t-t') (A.7) 
where 

a(n = /3«£<0)2>B (A.8) 
With eq A.7, the reduced action is 

S = V s + SB[^\t)] + h-lf0
8hdt JA1(O[^(O +|«(f)] 

- A2(Oj[a(s)S(s)(0 + Ae(0) - |(a(f)) V 0 ] } (A.9) 
from which diabatic Hamiltonians are readily constructed. They 
are 

Hi=HB-^-\a^ 

H2 = HB + fl(5)(?(s) + Ae(0> - ±(a(f)) V 0 (A. 10) 

where HB is the (electronically averaged) bath Hamiltonian for 
the slow (nuclear) degrees of freedom. 

Notice that one effect of averaging out the fast electronic 
polarization is to lower the energy of state 1 by a^/2, and to 
lower the energy of state 2 by (a(f))2a(f)/2. The net solvation 
energy, when the system is confined to state 1, is 

A^1 = -kBT H(CXPl-^(H1 -HB)])B) = -\a 
(A.ll) 

where 

a = cxis) + am (A. 12) 
with 

a(s)=0<(56(s))2>B (A. 13) 
The second equality of eq A.l 1 is the result of performing the 
Gaussian average over the bath. From that result, we see that 
the fast and slow polarizations contribute in a similar fashion to 
the equilibrium solvation. In contrast, the two polarizations 
contribute in markedly different ways to the behavior of the energy 
gap, AEi2 = H2-Hx. For example, its average with the system 
confined to state 1 is 

(AE12), = Ae<°> -\[(a^f- 1]«(0 + (0<
s> + l)<d?<s>>, 

= Ae<0) -\[(a^)2- l]a ( 0 + (a(s) + l)a(s)(A.14) 

where the second equality follows from the Gaussian average of 
d>(s> with Hamiltonian H]. 

In a classical model of the bath, there are no high-frequency 
polarization fluctuations. Further, if the low-frequency com­
ponents are tuned to give the correct solvation energetics, then 
a(0 = o and a(s) = a. Such a classical model gives 

(AEi2)\
d) = Ae(0) + (a(s) + l)a (A.15) 

Notice the differences between this result and eq A. 14. In an 
asymmetric system, the fast electronic polarization may solvate 
state 1 to a different extent than it solvates state 2. The resulting 
contribution to the average energy gap, -[(a(f))2 - l]a (n/2, is 
missed by the classical model. Further, the fluctuations in the 
energy gap scale with a(s). For the classical model, these 
fluctuations scale with a. This difference in scaling results in the 
differences between the last terms of eqs A. 14 and A.15. 

An analogous comparison can be made concerning the 
thermodynamic driving force, AGi2. By computing the difference 
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between H\ and H2 at their respective minima, we find 

AG12 = <A£12>, - («(s> + l)V s ) /2 (A.16) 

This method for computing AG^ is correct because in the model 
the force constants governing fluctuations are the same in states 
1 and 2. The reader may verify that the generally correct AGj2 
= A/42 - AMI gives the same result as (A.16) for this quantal 
model. In contrast to (A.16), the classical model gives 

AGf2
0 = (A^12)S

0" - (a(s) + l)2a/2 (A.17) 

The solvent reorganization energy, Xi2, described in traditional 
treatments of electron transfer,15 can be defined in the present 
model according to 

<A£12), = X12+ AG12 (A.18) 

As a result, (A.16) gives 

X12 = (a(s) + l)V s ) /2 (A.19) 

while the classical model gives 

Xf2" = (a(s) + l)2a/2 (A.20) 

The comparison of (A.19) and (A.20) is in agreement with 
Marcus' predicted scaling for these quantities. 

Marchi et al. 

Consider the consequences of this analysis to the protein 
molecular dynamics simulations reported in this paper. The 
molecular force field model was built from parameters designed 
to give a reasonable description of solvation. Hence, the average 
energy gaps one computes with the molecular dynamics coincide 
with (A. 15) and the thermodynamic driving forces coincide with 
(A. 17). Since, to a reasonable extent, the atomic structure of the 
protein complex is uniformly dense, the asymmetry associated 
with electron polarization is probably negligible, i.e., a">« 1. As 
a result, the primary error of the classical model is in the energy 
gap fluctuations, which we see are too large by an amount a/a^. 
This ratio is the reciprocal of the ratio of the Pekar factor to the 
Born factor, eq A. 1. 

In summary, the results of a classical simulation should be 
adjusted by (1) reducing the solvation contribution to the energy 
gap by the factor a(s)/a « 1/«», and (2) reducing the mean-
square fluctuations by a(s)/a = 1/«=., and increasing the free 
energy curvatures by a/a^ « e„. 

Provided the electronic polarization fluctuations occur iso-
tropically throughout a proteic system, the same correction factors 
should be applied to all pairs of redox states. Note also that the 
same scale factor applies individually to AGi2 and Xj2 as well as 
to the total solvation portion of the energy gap. 


